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Abstract

Consider k populations LI i=1,...,k, where an observation
from "y has binomial distribution with parameters N and P, (unknown) .
Let = . i . i . = i
et P 1T§fk pJ A population L with P; p[k] is called a best
pcpulation. ~We are interested in selecting the best population. Let
p = (pl,...,pk) and let i denote the index of the selected population.

Under the loss function Q(B,i) = Pk Py’ this statistical selection

problem is studied via empirical Bayes approach. .oy

Some selection rules based on monotone empirical Bayes estimators
of the binomial parameters are proposed. First, it is shown that,
under the squared error loss, the Bayes risks of the proposed monotone
empirical Bayes estimators converge to the related minimum Bayes
risks with rates of convergence at least of order O(nfn), where n is
the number of accumulated past experiences at hand. Further, for
the selection problem, the rates of convergence of the proposed

selection rules are shown to be at least of order Ol{exp{-cn)) for

some o - 0.

Abbreviated Title: Empirical Bayes Selection Rules
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EMPIRICAL BAYES RULES FOR SELECTING
THE BEST BINOMIAL POPULATION

1. Introduction

In many situations, an experimenter is often confronted with
choosing a model which is the best in some sense among those under
study. For example, consider k different competing drugs for a certain
ailment. We would like to select the best among them in the
sense that it has the highest probability of success (cure of
the ailment). This kind of binomial model occurs in many fields,
such as medicine, engineering, and sociology. The problem of
selecting a binomial model associated with the largest probability
of success was first considered by Sobel and Huyett (1957) and
Gupta and Sobel (1960). The former used the indifference zone
formulation and the latter studied the subset selection approach;
see Gupta and Huang (1976) and Gupta, Huang and Huang (1976), and
Gupta and McDonald (1986) for further variations in goals and
procedures for this problem.

Now, consider a situation in which one will be repeatedly
dealing with the same selection problem independently. This will
be the case with an on-going testing with drugs, for example.

In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect '
to an unknown prior distribution on the parameter space, and then,

use the accumulated observations to improve the decision rule at each
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stage. This is the empirical Bayes approach of Robbins (see
Robbins (1956 , 1964 and 1983)). Many such empirical Bayes rules
have been shown to be asymptotically optimal in the sense that
the risk fcr the nth decision problem converges to the minimum
Bayes risk which would have been obtained if the prior

distribution was known and the Bayes rule with respect to thig

prior distribution was used.
Enpirical Bayes rules have been derived for subset selection

goals by Deely (1965). Recently, Gupta and Hsiao (1983)

and Gupta and Leu (1983) have studied empirical Bayes rules for
selecting good populations with respect to a standard or a
control,vith the underlying distributions being uniformly
distrituted. Gupta and Liang (1984) studied empirical Bayes

rules for selecting binomial populations better than a standard

or a ccatrol.,

In this paper, we obtain empirical Bayes procedures for
selecting the best among k different binomial populations.
These rules are based on monotone empirical Bayes estimators
of the binomial success probabilities. First, it is shown
that, urder the squared error loss, the Bayes risks of the

rroposed monotone empirical Bayes estimators converge to the

rclated minimum Bayes risks with rates of convergence at least

. of order 0(n"Y). Further, for the selection problem, the rates
of convergence of the proposed selection rules are shown to
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be at least of order O(exp(-cn)) for some c > 0.

>
(]
L]
L)
' 2. Formulation =f *he Empirical Bayes Approach
3 Conesider k binownial populations T, i =1,...,k, each
y consisting of N t-~ials. For each i, 1 = 1,...,k, let Py be the
N probability cf success for each trial in oy, and let Xi denote the
number of successes among the associated N trials. Then, xilpi
- is binomially distributed with probability function fi(x|p1) =
- N X N-xi k
[x ]pi (1-p) , %y = 0,1,...,N. Let £(xIp) = T £ (x |p,)
i i=1
vhere x = (zl,...,xk) and p = (pl""'pk)' For each p, let
» Pgyy S --- S Prk3 be the ordered parameters of PyreeerPpe It is

assumed that the exact matching between the ordered and the

unordered parameters is unknown. Any population T, with

P; * Pry) 8 considered as the best population. QOur goal is to

derive empirical Bayes rulee to select the best population.

Let 0 = (p|p = (pi,...,pk), P, € (0O,1), i = 1,...,k} be the

k
parameter space and G(p) = T Gi(pi) be the prior distribution
i=1

over (. Let A = (111 = 1,...,k) be the action space. When

action 1 is taken, it means that population g, is selected as the

i

best population. For the parameter p and action i, the loss

v 8 &7

function ¢(p,i) is defined as:

(2. 1) e(p,1) = p[k] - pi,

the difference between the best and the selected population.

P s
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Let X = {(0,1,...,N} be the sample space. f smelr--ticn

"X

i

1
N rule d = (dl""'dk) is a mapping from X ‘to [0,1]k zuzh that for
each observation X = (xl,...,xk), the function d(g) =

(dl(ﬁ),...,dy(§)) satisfies that 0 <€ d () =1, i = 1,...,%, and

k

E d,(x) = 1, Note that d,(x), i
1=1 N 1"

1}
-
-
g
-
wn

the prchability of selecting population ni as the best population

wvhen x is observed.

Let @2 = (d|d : X = [O,l]k, being measurabl=z) b2 thwe s2t of

o

all selection rules. For each d € 9, let r(G,d) dencie the

associated Eaves risk. Then, r(G) = inf r(G,d) .s ihs wminimum
ded

- Bayes risk.

y From (2.1), the Bayes rigk associated with s2lection rule d

K is:
: r(G,d) = J' Y @R dxfixipIdG(p
:‘ Y] §ex
(2.2) "
= C - z [z d.(x)?.(x,)]f.:.).
i~ i 7i g
XEX 1=1
| Wi(x)
vhere f(3) = g fi(xi), Pi(x) Bl ey
i=1 i
1 1
fi(x) = I fi(xlp)dGi(p), wi(x) = I pfi(x]p)dﬁi(p)
o] 0]
cC = E J P[k]dG(EIE)f(§); being a constan:,
X€X O

and G(p|x) is the posterior distribution of p given x.
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For each g € X, let

(2.3) A(x) = (4 |P (x,) = max ¥ _ (x )},
~ 174 J 7 J
1=s3<k

Thus, a randomized Bayes rule is

dG = (le,...,de), where

|A(5)|'1, if 1 € A(x);
2.4 d15(¥) i {0 otherwise;
and |A| denotes the size of the set A.

When the prior distribution G ia unknown, it is impossible
to apply the Bayes rules. In this case, we use the

empirical Bayes approach. Note

that, for each 1, ?i(xi) is the posterior mean of the binomiul

probability Py given that Xi = x, iB observed. Due to the

i
surprising quirk that Yi(xi) can not be consistently estimat=d in

the usual empirical Bayes sense (see Robbins (1964), Samuel
(1963) and Vardeman (1978)), we use below an idea of Robbins in

setting up the empirical Bayes framework for our selection problem.

For each 4, 1 = 1,...,k, at stage j, consider N+1 trials
from m,. Let )(1-1 and Yij' respectively, stand for the number cf
successes in the first N trials and the last trial. Let P

1J
stand for the probability of success for each of the N+1 trials.

PiJ has distribution Gi' Conditional on P1J = pij'

)(1j|p1‘j ~ B(N'pij)' Yij'pij ~ B(l,pij), and X and Y

are independent. Let gJ ((XIJ,YIJ),...,(XkJ,YkJ)) denote the
obzervations at the jth stage, § = 1,...,n. We also let X _, = X

= (X,.,...,X ) denote the present observations.
1 k

D Ty T T e vy ey e,
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Consider an empirical Payes selection rule d_(x;
p n' ¥

xX; 2

kn'%¥% Zy0-

TpreeerZ) = ) X 2y 20, d

vy 2 ). Let
~n

r(G,dn) be the Bayes risk associated with the selection rule

dn(g; gl,...,gn). Then,
(2.5) r(6,d = ) E J €(p,d (%5 Zyy-.v z MElxIpIdGip),
xEX Q
wvhere the expectation is taken with respect to (gl,...,gn). For
simplicity, dn(§; Zl""’gn) will be denoted by dn(5)'
Definition 2.1. A sequence of selection rules (dn)n=l ig said to

be asymptotically optimal relative to the prior distribution G if
r(G,dn) - r(G) as n = o,
From (2.4), a natural empirical Bayes selection rule can be

defined as fallows:

For each 1 = 1,...,k, and n = 1,2,..., let P (x) = Y. (x:
in in
(xil'Yil)""'(xin'Yin)) be an estimator of ?i(x). Let An(g) =
{i|?P () = max ¥ (x,)), and define d (x) = (d (XY, .0 ey
in 71 1< j<k Jn 74 n In
dkn(?é) ) vhere
|A <§)|“l 1f 1€ A_(x);
(2.6) d, (%) = n n
8] otherwise.
P
If ?1n(x) —_— Pi(x) for all x =0,1,...,Nand i = 1,...,k

(whero"_iq“ means convergence in probability), then, by the
boundedness of the loss function @(p,1) and Corollary 2 of

Robbing (1964), it follows that r(G.dn) 2 r{B3) as n -+ »  Thus, the
sequence cf gelection rules (dn):=i defined in (2.86) 1is

agsymptctically optimal. Hence, our task is only to
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find the sequence of estimators (?in(x)) possessing the abcve

- mentioned convergence property.

D 3. The Proposed Empirical Bayes Selection Rules
Before we go further to construct empirical Bayes estimators

(?in(x)), we first investigate some property related to the Bayes

rule dG defined in (2.4).

R Definition 3.1. A selection rule d = (dl""'dk) is said to be

monotone if for each 1 = 1,...,k, di(g) is increasing in Xy wvhile

all other variables x, are fixed, and decreasing in x

o J

J # i while all other variables are fixed.

for each

J

Note that Pi(x) is the Bayes estimator of the binomial
-V parameter Py under the squared error loss given that Xi = x is
observed. It is also easy to see that ?1(x) is increasing in %

for x = 0,1,...,H.

Definition 3. 2. An estimator ¥(:) ig called a monotone estimator

if P(x) is an increasing function of x.

s 4 2

By the monotone property of the Bayes estimators ¢

(%!},

.

i

i =1,...,k, one can gsee that the Bayes selection rule dG is a

{2 v ¢
el

monotone selection rule.

Under the squared error loss, the problem of estimating the

binomial parameter Py is a monotone estimation problem. By

ey D

Theorem 8.7 of Berger (1980), for a monotone estimation problem,

the class of monotone decision rules form an esaentially complete

LRSS

: clasa. With thie consideration, it is reasonable to require that

the concerned estimators (f, (x)) possess the above

. monotone property.




In the literature, Robbins (1956) and Vardeman {(1378), anc:.3

athers, proposed some estimators for ?1(x). Thoee estimators
are consistent in that they converge to ¢i(x) in
probablility. However, they do not possess the monotons proo-ri

We now propose some monotone estimators.

Fror each 1 = 1,...,%k, n = 1,2, , and x = 0,1, N, =502
n
1 -1
3. 1) £,00 = = 2 I S
Jj=1
n
(3.2) W, (x) = L z Y. I, (X, +n %
in n 15500 Py ;
j=1

vhere IA(~) denotes the indicator function of the set A. AL,

let Vij = xij + Y for each 1 = 1,...,k and jJ = 1,2,...

1]
Defin=
n n
~ _ x+1 1 -1
(3.3 W, 0o = {[ETHTTT z I(x+1)(vij’]A[H 2 I(X)(xij>]} +n 7,
J=1 j=1
wher2 =z A b = min {(a.b}. Let
tZ. 4 'Pin(x) = win(x)/fin(x);
2.5 P = W M
(3.3 Pin(x) win(x)/fin(x),

and, tor each 0 € x < N, define

tal
o
-
%

N

* 1
in max min {

?in(y)/(t-s+l)};
O<ssx s<t<N

<
T Y Kad

=

A %
(3.7 Pin(x) = max min {

?1 (y)/(t-s»l)}.
Ccgex e<teN n

)

=

y
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Note that by (3.8) and (3.7), both ?In(x) and %fn<x) are

increasing in x. We propose ?:n(x) (or ?In(x)) as an estimator of

?1(x). Let

» *
(3.8) A () = {iff, (x,) = max ¢ 6 (x.)]};
in "1 1< <k n 74§

~ %
max ¥ (%)},
1sj<k I

(3.9) A

*

"
~—
-

EY;
- x
ol

x

Two selection rules d. = (d* ,...,d*
n in kn

analogous to the Bayes selection rule dG are proposed as follows:

* ~ %

ln""'dkn)

) and d® = (d
n

For each 1 = 1,...,k, let

*

-1
. {lAn(§)|

1f 1 e A:(§);
(3.10) d’ (x)

0 otherviee;

and

" ;2:<§)1'1 1f 4 e A (x;
(3.11) d, (x) = n
0 otherwise.

Due to the monotone property of the egtimators (?*n(x

i bi

i

i=1,...,k} and (;*n(x ); 1 = 1,...,k}, one can see that

i

* - %
dn and dn are both monotone selection rules.

i

4. Asymptotic Optimality of the Monotone Estimators
In this section, we study the asymptotic optimality

* (x) and ;* (x). Under the squared
in in

prog2rty of the estimators ¥
error loes, ¢i(x) is the Bayes estimator of P;- The associated

Bayes risk is

(4.1) R, (G,) = E((Pi - f
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Let Yi(-) be any estimator of Py with the associated Bayes

risk Ri(Gi, wi). Then,

= _ 2
(4.2) Ri(Gi,Yi) Ri(Gi) = E[(Yi(Xi) Pi(Xi)) ).

Let (Yin(x; (Xil,Yil),...,(Xin,Yin)) = Yin(x)) be a sequence
of empirical Bayes estimators based on (x; (xil’yil)""’
kXin,Yin)).

Definition 4.1. A sequence of empirical Bayes estimators
(yin):=1 iz gaid to be asymptotically optimal at least of crder

Ri(Gi) < O(an) BES

n - » where (an) ig a sequence of positive values satisfying

a_relative to the prior G1 if Ri(G

n i'Yin)

lim a_ = O.
n

n —%o

Theorem 4.1. Let (?In) and {;In) be the sequences of epirical

Bayes estimators defined in (3.6) and (3.7), respectively. Then,

» ~1

R, (G, # ) - R (G,) < 0tn D

d R (G,,¥" ) - R,(G,) < O0(n™ 1)
an 124" 4n et B L

The fcllowing lemmas are useful in presenting a concise proof of

Theorem 4.1.

Lemma 4. 1. Let Z be a random variable and z be a real number
such that - £ a €2, Z < b <€ », Then, for any s > Q,
zZ-a b-z
EC|12-28) = f st ip(z-z < -t)dt j st lpiz-z > tidt,

provida2d that the expectation exists.

Proocf: Straightforward computation.
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Lemma 4. 2. For the estimators ?in and ?In defined in (3.4) and

(3.6), regpectively, we have

" .
a)l ?1n(0) L3 4

b) For 1 £ x < N-1},

»*
1n€0), PN 2 ¢, (M),

»*
?1n(x) > ?in(x) 1ff there is some y < x

such that ?1n(y) > Yin(x);

' (x) < P, (x) iff there is some y > x
in in

such that fin(y) < ?in(x).,

c) For O £ x < N,

=X
%
PUPY (%) - P, (x) > t} < E PUP,_(y) - P (y) > t);
y=0
N
*
PIPY (%) - P (x) < -t) 5 z PIP, (y) = # (y) < -t),
y=x

Proof: Parts a) and b) are straightforward from

(3.6). Part c) is a result of parts a) and b) and an application

of Banferroni’s inequality.

*

in are replaced

Remark 4.1, Lemma 4.2 ie also true if ?in and ¥

~

~ %

by ?in and ?1n' regpectively.

Lemma_ 4. 3. For 0 < t <« 1-?i(x) and 0 < y < x,

2

a) P(?in(y) - ?i(y) > t) < exp(-2nal(t,y,n,1)); and

~ n 2

b) P(Pin(y) Pi(y) > t) € expl- 5 a

if t > btn,y,1), where b(n,y,1i) = (l-Pi(y))n-

-1 -1
a3, (t,y,n,4) = tUf (y) + n ") - a T(1-P (y)).

(t,y,n, 1)},

1/<£1<y)+n'1) and

For O < t <« ?i(x) and x £ y £ N,

2
c) P(?in(y) - ?i(y) < -t) g exp(-2n32(t,y,n,1)); and

'

~
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2

~ n
d) P(?in(y) - ?i(y) < -t} £ 2 exp(- = a,

= 2
-1 -1,
) - n T1-P ().

(t,y,n, 1)}, wheoo

az(t,y,n,i) = -t(fi(y) + n
Proof: Here we prove part a) only. Other parts follow by
a similar reasoning.
For O < t <« l-fi(x) and 0 €y £ x, by (3.1), (3.2), (3.4
and the fact that ¢ (y) = W (x)/f, (%), following a straight-

i i i

forward computation, one can obtain

PLP, (¥) = P (y) > t)

i

PIW, (y) - (P ty) + )f, (y) > 0
(4.3)

tfi(y) > al(t,y,n,i)}.

Note that I(y)(XiJ)IYiJ - Pi(y) - t), } =1,2,...,n are i.i.d.,
- - - - - - 1

?i(y) t s I(y)(xij)[YiJ ?1(y) tl €1 ?i(y) t for all
J, and 1’-1[1{},}()(1‘1)[Yi.j - ?i(y) - t11 = —tfi(y). Also,

al(t,y,n,i) > 0 iff t > bi(n,y,i). Hence, by (4.3) and Theoren 2

of Hoeffding (1963), P(?in(y) - ?i(y) >t} = exp(—2na2(t,y,n,;))

1
if ¢t > b(n,y,1i).

Remark 4.2. Lemma 4.3 is still true if the strict inequality

( > ) is replaced by < ( > ).

L=2mma 4. 4. For 0 < y £ x,
1-7,(x)
1 -1
a) I tP(Pin(y) - ?i(y) > tidt < 0(n 7); and
(8]
1-Pi(x)~ -1
- > < .
b) I tP(F, (y) - P (y) > t)dt £ 0(n )
0
SRR S O IR R R I Ao, o A S S S S P aadt st Tl T OGO G G LY
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For x <y < N, i

?1(x) ;
_1 '
or [ tPre tx) - (y) < ~tadt s 0n”h); and )
0 .
Y, (x) i
1 -1
d> I PP, (y) - P (y) < -tidt 5 O(n ). '
o)
Proof: We prove part a) only.
Cage 1. As b(n,y,1) =21 - ?i(x), then ;
1~?i(x> :
I tP{y, (y) - P (y) > t)dt :
O .
b(n,y, i) 3
< | t dt :
0 ;
2 14
= b (n,y,1)/2
= 0(n~2).
Case 2. A= bi(n,y,1) <1 - ?i(x), then, by Lemma 4.3.a) and a -
direct computation, .
1-?i(x) :
- A
J' tP(P, (y) P, (y) > tidt 3
0 e
bi{n,y, 1) l-fi(x)
< I t dt » I tPLP, (y) - P (y) > t)dt ]
0 bi(n,y, 1) 3
< 0tn™% « otn™hH -
1 3
= 0(n 7). :
r
r
'
SRS -.u.r.w,u:w:n{n.w.nA--r.ﬂ;:{:;::;_;,:,:c<_\:-_ .
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Proocf nf Theorem 4.1.

By (4.2),
»
0 < R,(B,,P] ) - R(G,)
(4.4) = EC(e* () - P (X2
in i

N

= ECCPY () - 2. (X2 1K = xIf, (%)
'E in 1 X = x11, (x).
x=0

By Lewmmas 4.1 ~ 4.3 and the fact that O < Y:n(x), Pi(x) <

1, one can obtain that

* 2 _
E[(?in(X) ?i(X)) X = %1
?i(x) . |
= 2 - -
j ﬁtP(?in(x) Pi(x) < tidt
(o]
l-?i(x) §
(4.5) . f 2tP(P* (x) - P (x) > tidt
in i
o

A
0N 2

J 2tPLP, (y) - P (y) < -tidt
0

- +
+ E I 2tP(P, (y) - P (y) > tidt.

Then, by Lemma 4.4, (4.4), (4.5) and the fact that N is a

£ 3 »* -1
finite number, therefore, Ri(Gi,?in) - Ri(Gi) < 0(n 7).

The similar claim for ¢;n is established on the same lines.

-t at At e
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S. Asymptotic Optimality of the Selection Rules

Let (dn}:=1 be a sequence of empirical Bayee selection rulee
\ relative to the prior distribution G. Since the Bayes rule dG
achieves the minimum Bayes risk r(G), r(G,dn) - r(G) > 0 for all

n=1,2,... . Thus, the nonnegative difference r(G,dn) - r(BG) is

used as a measure of the optimality of the sequence of empirical

[ -]
Bayea2 rules (dn)n=1'
Definition 5.1. The sequence of empirical Bayes rules (dn):=1 is
f said to be asymptotically optimal at least of order pn relative

to the prior G if r(G,dn) - r(G) & O(pn) as n - » where (Bn) is a

sequence of positive numbers such that 1lim g = O.
n -

For each x € X, let A(x) be that defined in (2.3) and let

B(x) = {1,...,k} - A(x), Thus, for each x € X, ?i(xi) > ?J(xj)
for 1 € A(x) and § € B(x). Let ¢ = min (P, ,(x,) - P (x )] :
N ¥ XE€X 174 J J 0

i € A(x), jJ € B(x)). Hence, ¢ > O since X is a finite space.

Then,
0<r (G,d:) - B
3 #*
(5.1) < 2 P{ max Pin(xi) < max PJn(xJ))
yex 1EALO) JEB (%)
* * .
< Z z z PLPY (x) < P (x ).

XEX 1€A(x) JeB(x)
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llow, for each x € X, i € Alx), J € B(x),

pre” *
.(?in(zi) < ?Jn(xj))

* *
P([Yin(xi)-fi(xi)]~[?Jn(xj)—?J(xJ)3 < ?J(xj)-Pi(xi))

* ¥
.4 P([Pin(x1)~?i(hi)J~[?Jn(xj)-?J(xJ)]

1A

-e)

A

) * _ _ * e
3 < P(?in(xi) Pi(xi) < -e/2) ~ P(PJn(xJ) PJ\xJ) z e/2).

In (5.2), the first inequality is due to the definition of e.

From (2.3), it suffices to consider the asymptotic behavior of

] * - * R
. the probabilities P(?Jn(xj) ?J(xj) z e/2)} and P(?in(xi) Pi(xi)
< -~e/2}.
g Let ¢, = min  min (%f2(y)/2). Then ¢, > O. From the
. 1<i<k O<y=<N
g definitions of & and b(n,y, i), we see that, for
. ctufficiently large n, € > 2 max max {(b(n,y,1i)). Therefore, Ly
- 1<ick OsysN
. Lemma 4.2 c) and remark 4.2, for n large enough,

PieY (x.) - P (x,) = e/2)

A in'*y 1%y =
*»
%
N
) < 2 PIP, (y) - £ (y) 2 &/2)
N
(5.3)
' xi 2
:j < z exp(-2nal(e/2,y,n.i))
j y=0

A < O(exp(-cln)).

The last step of (5.3) follows from the fact that

exp{-Znai(t,y,n,i)} < O(exp(—cln)) for all 0 <y < Nand 1 < i < k,

g
B

o,

s

0

\

.

d L4
)

»

which is established easily by a straightforward computation and

definitions of a1(€/2,y,n,i) and Cy-

e T A RN .. e e e e et A . .
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Similarly, one can prove that

»
P(Yin(xi) - ?1(xi) < -&/2)

N
(5. 4) s z exp{-2na

yEX

2

2(e/2.y,n,i))

i

<€ O(exp(-c,n)).

1

Therefore, from (S.1) to (5.4), and the finiteness of the

space X, we have

0 < r(G,d:) - r(G) < O(pr(-cln)).

Similarly, for the sequence of empirical Bayes selection

~ ~%
rules ‘,;):=1' we can prove that 0 < r(G,d ) - r(G) < 0(exp(-c,n))

for some c2 > 0.

Wwe now state these results as a theorem.

Theorem 5.1. Let (d.)“ and (E')“ be the sequences of
—_— n n=1 n n=l

enmpirical Bayes selection rules defined in (3.10) and (3.11),
regspectively. Then,

r(G,d;) - r(G) S O(expl-c n)),

1

and

r(G,a;) - r(G) < Olexp(-c,n))

2

for some cy >0, 1 = 1,2,
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